Comparison of HoG with CNN

تعرفه تبلیغات در سایت
عنوان عکس
عنوان عکس
عنوان عکس
عنوان عکس
عنوان عکس


یافته ها در جستجو

    امکانات وب

    آرشیو مطالب

    برچسب ها

    Vote count: 0

    I am working on the comparison of Histogram of oriented gradient (HoG) and Convolutional Neural Network (CNN) for the weed detection. I have two datasets of two different weeds.
    CNN architecture is 3 layer network.

    1) 1st dataset contains two classes and have 18 images. The dataset is increased using data augmentation (rotation, adding noise, illumination changes) enter image description here

    Using the CNN I am getting a testing accuracy of 77% and for HoG with SVM 78%.

    2) Second dataset contact leaves of two different plants. each class contain 2500 images without data augmentation.
    enter image description here

    For this dataset, using CNN I am getting a test accuracy of 94% and for HoG with SVM 60%.

    My question is Why I am getting higher accuracy for HoG using first dataset? CNN should be much better than HoG.

    The only reason comes to my mind is the first data has only 18 images and less diverse as compare to the 2nd dataset. is it correct?

    asked 36 secs ago

    نویسنده : استخدام کار بازدید : 74 تاريخ : سه شنبه 2 خرداد 1396 ساعت: 16:50
    برچسب‌ها :
    اخبار و رسانه هاهنر و ادبیاترایانه و اینترنتعلم و فن آوریتجارت و اقتصاداندیشه و مذهبفوتو بلاگوبلاگ و وبلاگ نویسیفرهنگ و تاریخجامعه و سیاستورزشسرگرمی و طنزشخصیخانواده و زندگیسفر و توریسمفارسی زبان در دیگر کشورهاads-123