Efficiently convolve with 2D Gaussian (non-diagonal covariance matrix)

تعرفه تبلیغات در سایت
عنوان عکس
عنوان عکس
عنوان عکس
عنوان عکس
عنوان عکس

آرشیو مطالب

جستجوگر

یافته ها در جستجو

    امکانات وب

    برچسب ها

    Vote count: 0

    After looking at the SciPy docs and NumPy, I haven't found a way to efficiently convolve an image with a 2D Gaussian N(μ, Σ). Here, Σ is not diagonal, which means that the filter will not be separable.

    I have looked at scipy.ndimage.filters.gaussian_filter, scipy.signal.gaussian and scipy.signal.general_gaussian, but none of them seem to support it.

    Then I think the only way would be to create a the window (kernel) for my filter and call scipy.signal.convolve2d. However, in my use-case, I will need to generate many of those Gaussians, all with different Σ.

    What would be the most efficient way to proceed?

    asked 26 secs ago

    نویسنده : استخدام کار بازدید : 49 تاريخ : جمعه 29 ارديبهشت 1396 ساعت: 22:00
    برچسب‌ها :

    خبرنامه

    عضویت

    نام کاربري :
    رمز عبور :